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--The research currently sponsored under Grant No. AFOSR-81-O170 consists of
several distinct and separate activities. The separate research efforts are
unified by a conimon theme: the application of optical processing for image
bandwidth compresssion. Within this common theme, however, the separate
research projects are not completely related to each other. Therefore, this,
report is put together, literally, as a number of independent reports. The
separate sections of the report, which follow this section, are intended to be
read separately and independently of any other section. Each section has its
own references and its own figure labellings, for example.

The separate sections of this report, and the research problems dealt with in
each section, are summarized in the following:

(1) Data compression by multi-spectral staggered sampling, and data
reconstruction by spatial and spectral interpolation;(see Section III of
report). .

(2) Data compression by optical tomography, with data reconstruction byoptical convolution and back projection*(see Section IV of report).

(3) Adaptive data compresstib y spatial transformations to create a
spatially stationary imagej (see Section V of report).

'-- _i,.- ~ (4) Improvement of the optical data compression method known as IDPCM .
(see Section VI of report).
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(I,) Introduction

Grant No. AFOSR-81-0l70 has an objective which is well-

summarized by the Grant title: "Feasibility studies of optical .. .

processing for image bandwidth compression schemes." It is the

intent of research sponsored under this Grant to direct investi-

gation into the following issues:

(a) formulation of alternative architechtural concepts

for image bandwidth compression, i.e., the formula-

tion of components and schematic diagrams which

differ from conventional digital bandwidth compres-

sion schemes by being implemented by various

optical computation methods;

(b) simulation of optical processing concepts for image

" . bandwidth compression, so as to gain insight into

typical performance parameters and elements of system

performance sensitivity;

(c) maturation of optical processing for image band-

width compression until the everall state of optical

methods in image compression becomes equal to that

of digital image compression.

It is the last of these, item (c), which represents the

continuing strategic objective of the efforts being carried on

under Grant No. AFOSR-81-0170. It is important to remember that

the major attention given to image bandwidth compression has

been for methods most conveniently implemented by digital compu- -

ti ons. As flexible and multipurpose are digital methods, there

* *~-~*%: -s~



may always be operational circumstances, environments, or con-

straints where the availability of a different technology is 0

important. However, with the concentration upon digital compu-

tations, which has characterized most research on bandwidth -

compression, alternative methods in optics have suffered. Thus,

the purpose of research sponsored under this Grant is to serve

as a source of alternatives for future concepts in bandwidth

compression, so that the environment for compression technology

need not be dominated by one methodology.

o
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(II.) Overview of the Report

The research currently sponsored under Grant No. AFOSR-81- -

0170 consists of several distinct and separate activities. The

separate research efforts are unified by a common theme: the

application of optical processing for image bandwidth compres-

sion. Within this common theme, however, the separate research

projects are not completely related to each other. There- .

fore, this report is put together, literally, as a number of

independent reports. The separate sections of the report, which

follow this section, are intended to be read separately and in-

dependently of any other section. Each section has its own

references and its own figure labellings, for example.

The separate sections of this report, and the research

problems dealt with in each section, are summarized in the fol-

lowing"

(1) Data compression by optical tomography, with data

reconstruction by optical convolution and back pro-

jection (see Section III).

(2) Adaptive data compression by modification of a previously

demonstrated technique, IDPCM, to an efficient spatially

recursive scheme (see Section IV).

(3) Adaptive image processing by using spatial transformations

to create a spatially stationary image (see Section V). 7 7

....

... 

.
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(III.) Tomography and the Projection Matrix

Tomography is a procedure which decomposes a two-dimensional image

into a series of one-dimensional projections, each made at a different

angle through the original image. A projection is produced by integrating

the image data in one direction across the image. Along the horizontal
axis, for example a projection is defined by:

Pe"x W f(x,y)dy

where P,9 is the projection at angle eand f(x,y) is the original image.

Subsequently, either the coordinate system or the object is rotated and the

next projection is calculated.

In digital tomography, the summed (integrated) data results are

registered by a one-dimensional array of discrete sensors or detectors.

This string of detectors must be large enough to record all of the data at

each of the possible angles. For a square image, the maximum number of

detectors is required at the angles of 450 and 1350; see Figure 1. At .

other angles however, the ends of the detector array swing outside of the

* image, thus registering artificial zero data. The scalloped ends of the

m_ projection matrix, visible in Figure 2, are the result of these artificialS

zeros.

The projection matrix of any image displays certain consistent char-

acteristics. As seen in the projection matrix of Figure 2, there is a .

sinusoidal design woven into the matrix; this pattern is present in the

projection matrix derived from any image.

Each horizontal line in the projection matrix corresponds to the .

projection data gathered by Ll N detectors at one specific angle; a

horizontal line, therefore, is referred to as a data sequence from "within"
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Figure 1: demonstrates how the number of detectors necessary varies as a "@ .

function of projection angle. At a projection angle of 450 (a) seven' '

detectors are required, but at a projection angle of 0* (b), only five• -.

detectors are reeded; the extra detectors at the endpoints swing out of""",

the image. 1
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a projection (See Figure 3). Conversely, a vertical line through the

projection matrix represents the data integrated at one detector as it .

travels through all M angles; this is referred to as data "across" pro-

jections (See Figure 4).

To reconstruct the original image, filtered back-projection is done.

Each projection first is convolved with a high pass, rho filter. Following

this, the filtered projections are spread back across the image plane at

their original angle and then the results from all angles are summed.

Redundancy in a Projection Matrix

The purpose of data compression techniques is to remove, or at

least reduce, the redundant or correlated information, thereby retaining

only orthogonal or decorrelated data. It is well known that the data in

most images if highly redundant. From this knowledge, one might surmise

that the projection matrix also contains a great deal of redundant infor- .' --

mation. To test this, a method was devised to measure the entropy in a

projection matrix, both within and across projections. The information

or entrcpy, H, can be calculated using:

,log bits (within projections)

Hd =,,pd log2 P bits (across projections) 0

where n is the number of cells in the data histogram, eis a specific angle,

d is a specific detector and p,: or p., is the probability of data being

. contained in the ith cell of the histogram.

.°. .... ,

-.. ....... ....... '..' .'. .-'.-'.-,,,.-..- -...,.- - .. ..-..- ,- .... ,.- .- . ... - .. ..,-." .,- ." .- .. .. . . .".,-....,..... . . .-..... . . . . .. ,...,.... . .,.. . . . .,,..,.
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Figure 3: The values of the original ima -e (a), integrated along y' are

sensed by each of the detectors along x'; for example, the result at detector

nL~mber three is the sum of values in the shaded region of (a). For the

* projection angle e a' the results from each detector are placed into the

the projection matrix (b) along a horizontal line.
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The redundancy in a line of projection data then can be calculated: '

Re= Hmax -H 8  (within) or Rd = H - Hd (across)e max d max d

where Hmax is the maximum amount of information possible.

Method

The original image, the source of the projection data, was 128x128

pixels in size. For every projection angle, 182 detectors (each detector

being 1 pixel in width) were used and a total of 100 projections were made.

For ease in calcL'lation, the data in the matrix, with an original range from

0 to 34323, were scaled to a range from 0 to 255. A histogram of data

values was computed for each line in the matrix. The histogram was divided

* " into 16 cells, each with a width of 16 intensity levels. The maximum . -

L*. amount of information possible would be present if all cells in the histo- "-

gram were equally probable:

Hmax= log2 16 = 4 bits

m Results

Figure 5 shows the redundancy within each projection as a function

of projection angle. The amount of redundancy appears to be strongly

dependent upon the angle of projection. The redundancy is highest near

the angles of 00,900 and 180' and is lowest near angles of 450 and 1350.

The maximum obtained redundancy of 2.184 (54.6% of the maximum) occurs at

an angle of 0 and the smallest value of 0.0577 (1.4% of maximum) is at

the angle of 1350.

J_-F

~-, -

.-.................-.. . . ,°,
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0

Figure 5: Redundancy within projections, as a function of projection angle,
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Greater redundancy at certain angles primarily appears to be a function

of how the tomographic process operates on a square image. Figure 6 shows

why such an effect may occur.

Redundancy across projectioas is shown in Figure 7. Detectors near

th#E endpoints of the projection matrix, those that swing out of the image

near angles of 00,900 and 1800 were excluded from analysis to avoid the

introduction of artificial zero data. The values vary, for the most part

* between redundancies of 1 to 2 bits (25-50%) for each detector.

Compression of Projections using DPCM

Differential pulse code modulation (DPCI4) coders operate on the

principle of quantizing prediction error values rather than actual data

values. Based on the recent history of the signal, a predictor "Xn)0

is made to approximate the actual x(n). Then, rather than quantizing

* and storing x(n), the difference:

is quantized and stored. Subsequently, the decoder attempts to recover

the original signal by essentially integrating the quantized differences

between samples. Figure 8 shows a block diagram of the basic closed loop

DPCM system.

For a data sequence x(n) with a normalized autocovariance,

the variance of the difference signal, which is the input to the quantizer,

is significantly smaller than that of the original data. Since the quant-

ization error variance is directly proportional to the variance of the quant-

izer input, it is possible to lower the quantization bit rate to a specific

* * .. .. *.•:* *.*. %:*'* -
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Figure 6 demonstrates how redundancy varies as a function of projection angle due ..- "':,
to the tomographic process operating on a square image. Assuming a completely I'IzZ.

* redundant origin.l image, the projection data atezO ° is totally redundant also;--,.
however, the projection at( =45 ° is only about 50% redundant. ' "
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level and maintain the same signal to noise ratio (SNR). Further reductions

in the bit rate, past the new level, also are possible but at the expense

of the SNR.

The closed loop or feedback-around quantizer diagram of Figure 8

ensures that the quantization errors do not accumulate into subsequent

samples, i.e., the errors should be independent.

There are a variety of prediction schemes which can be used. The

two used in this study are:

1. Normalized autocovariance or rho method

2. Average rate of change or slope method.

Prediction Methods

For both of the prediction methods, coding of the projection matrix is

carried out one line at a time. The first value in each line is carried

through the: system at its full bit rate and the remaining values in the line

are quantized at the reduced rate.
-O

The prediction errors, the input to the quantizer in a DPCM system,

tend to be distributed as a Laplacian (exponential) probability density

(Gray, 1983). Decision and reconstruction levels have been derived to

minimize the mean square error in quantizing a Laplacian. These levels,

given in Pratt (1978), are used in the quantizer of Figure 8. The mean

square error between the original and decoded values of the projection

matrix were computed for each line and subsequently were averaged across

lines.

In order to perform DPCM on lines of constant sample size, the scalloped

ends of the projection matrix were trimmed before encoding, producing a

*.**.**...'. ..... *,
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rectangular mkatrix. The data values which were removed were those

collected by the detectors farthest from the origin, those that swing

-*. out of the image at angles near 0 ° , 90' and 180'. Tomographic reconstruction -

"" without these data produces a circular image.

Rho Prediction. The Rho method involves a linear predictor of the

form:

x(n) = 2hjx(n-j) S

and the quantizer input for a first order predictor is:

d(n) = x(n) - hlx(n-l) o

Taking the square and expected value of the equation above, it can be shown:

To minimize the mean square error, take the partial derivative of the variance

with respect to hI  and set it equal to zero.

6 C .- -

, . . . °

Estimation of x by this first order predictor assumes that you -

have no other information concerning the expected shape of the projection

data. The slope method, however, relies on the fact that some general

assumptions can be made concerning the pro.ection matrix. - -

' Slope Method. As mentioned earlier, all projection matrices share

the sinogram pattern. Based on this, it should be possible to make a more

accurate estimate of x based not only on recent signal history but also on

. where x lies in the matrix and on whether DPCM is being carried out within

-. or across projections.
_9_

".-.-. . .. . :: .. .. . . .. . . ..... . . . . .. .... , .. ..... . . .. . ."..'.•%...
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The trimmed projection matrix is partitioned into a set of blocks,

see Figure 9. For each block, an estimate is made of the average rate

of change between x(n) and x(n-l), either across or within projections.

This slope value is then used as a predictor in both the coding and decoding

stages:

x(n) = x(n-l) + slope(m,i)

where x(n-l) is contained in the block (m,i) of the matrix. After their

calculation, these slope values are retained for the decoding phase,

consequently adding to the final bit rate for the coded matrix.
-6

Results

Table 1 gives the mean square error for each prediction method and

for various bit rates. Before compression, the trimmed projection matrix

contained values ranging from a minimum of 6776 to a maximum of 34323 with

a mean of 21670. Therefore, a mean square error (MSE) of 100,000., for

example, represents an average error of 317 per element of the matrix.

For the minimum value this represents an average of + 4.7% error, while

for the maximum value, it is an average error of + 0.92%.
0

Table 1

a) Within Projections
Rho Prediction Slope Prediction

MSE bit rate MSE bit rate

54,745 4.09 41,681 4.20
115,784 3.10 74,831 3.21 ""
270,901 2.11 158,945 2.22
986,390 1.12 483,260 1.23

.J'-'" .
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Figure 9: Trimd pn 
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Figure 9: Trimmed projection matrix which has been partitioned into a•

set of blocks. Each block, fcr example, may be lOxlO, meaning 10 angles .

long and 10 detectors wide.
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Table 1 cont.

b) Across Projections

Rho Prediction Slope Prediction

MSE bit rate MSE bit rate

20,220 4.13 16,176 4.23
80,437 3.14 54,698 3.25

307,745 2.14 228,544 2.25
2,540,996 1.15 1,233,708 1.26

Once the compressed prcjections have been decoded, the next step is O

to reconstruct the original image by back-projection. The following

photographs show the image in its original and reconstructed forms after

being subject to various amounts of data compression and different .

prediction schemes.

A,

,.I 0• ".

'p'.'-1-1

I .. • .

p' - -

... ... -..... . . .. . . . . . . . . . . . . . . . . . . ...... ** .. .. ".- ..

. . . . . . . . . . . . . . . . . . . . . . . . . . .. . .
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Figure 10 cont. 19
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e) coding within prcjections f) coding within projections
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Figure 10 cont.
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A post hoc analysis of the error distribution, the input to the

quantizer, was done to determine whether the assumption of a Laplacian

distribution was justified. Figure 11 shows the error [d(n)] distributions

resulting from both rho and slope prediction methods. The rho distribution

contains obvious deviations from an exponential, but the slope distr'bution,

by visual analysis, appears to match an exponential quite well. The main

differerce between the slope distribution and a theoretical Laplacian

[p(x)= a exp(-aixi)] occurs at the peak of the distribution and in the tails.

The mode of the obtained distribution is lower than expected, while the

tails are somewhat higher. Analysis of the obtained slope distribution

using Pearson's Chi Square Goodress of Fit Statistic, however, indicates

that it cannot be accurately modeled as a Laplacian (p)0.995). Based on

this finding, the question arises as to whether a better way to quantize

the errors is possible. Preliminary results obtained in answering that

question suggest that better quantization car be achieved when the decision

and reconstruction levels are extended further towards the tails of the-

distribution.

Figure 12 shows the results of extending the quantizer levels outward.

The: quantization for this image was performed manually, by visual analysis

ol the histogram. This reconstruction, with a bit rate of 2.1 bits per

element of the projection matrix, appears to be superior to the image of

- Figure lOg which is a slightly higher bit rate (2.22 bits); in fact Figure 9

". 12 seems to be almost comparable to the quality of some images quantized

to approximately 3 bits. Although a sharper image is obtained by adjusting

the quantization levels, a large amount of noise still appears in the .

reconstructed image.
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Figure 12: Reconstructior from projections quantized by moving decision

and reconstruction levels out toward the tails of the error distribution,

Coding done within projections, bit rate of 2.1 bits/element in matrix *

* ard slope prediction method was used.
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Conclusion

Tomographic projections, originally 16 bit data, can be compressed

to a bit rate of approximately 3.2 bits per element of projection matrix

(a compression ratio of 5:l).and still produce a recognizable image;

however, the image at this rate is of poor quality and unsuitable for

most applications.

An improvement in results can be achieved by adjusting the decision

and recorstruction levels of the quantizer. Another possible avenue for

improvement would be to employ more sophisticated prediction procedures.

However, a fundamental problem involved in this technique seems to rest

upon the fact that any errors in the decoded projection matrix are

amplified by the filtering done before back-projection. This high pass

filter is, most likely, the cause of the noisy appearance of the recon-

structed images. Since this filter is an integral part of back-projecting

tomographic projections, it would appear that, while further research

into this area may improve thE results demonstrated here, the amount of

improvement possible may not be significant enough to warrant the addition.l

investi gation. 0

- - - ] .. i

0 ''""
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* IV.) Background Discussion

Image data compression methods can be classified in two

basically different categories. One category is processing in

* the spatial domain. Another is "transform coding". In the first

category are those methods which exploit redundancy in the spatial

* data. Redundancy is a characteristic which is related to pre-

* dictability, randomness in the data. For example, an image of

constant gray levels is fully predictable once the gray level of

the first pixel is known. On the other hand, a white-noise random

* signal, such as that seen on a TV screen when no program is being -

broadcast, is totally unpredictable and every pixel has to be

stored to produce the image.

Interpolated difference pulse-code modulation, developed by

Hunt in 1977 [2), is a successful method of data compression in

* spatial domain. Since then, several variations of this method

have been developed. Recently, a significant improvement to

* IDPCM, named recursive IDPCM, was demonstrated by Hunt and Cao [1].

* Recursive IDPCM has two main features:

(1) This is a very efficient image data compression method

which has achieved the result of bit rate below 0.4, and mean-

square error below 0.002.

(2) This method is quite simple and is very economical for

machine cost El].

* A brief introduction to recursive IDPCM is shown below:

* (1) Take coarse subsample spacing: N (e.g., N=8);

* quantize subsamples.
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(2) Calculate the interpolated value of intermediate point

between two subsamples; use this interpolated value to calculate

the difference, and quantize the difference.

(3) Use the intermediate interpolated value added to the

quantized difference to calcualte a pair of intermediate inter- .

polated values with its neighbor two subsamples, etc.

A mode is defined as: S, 01, 02, 03, where S is the number

of bits for quantizing subsamples, and 01, D2, and 03 are numbers 6

of bits for quantizing differences. But DI, D2, and D3 have dif-

ferent numbers of bits. For example, take coarse subsample

spacing N=8, as in the following: e

S bits -]

O..9..... •

.+ 9 . •+ +
..............................

0 + w.' +9.

I :::I 6

8xS subimage
S- subsamples using S bits quantization

* - the first set quantized differences using D0 bits

+9 - the second set quantized differences using 02 bits

- the third set quantized diferences using 3 bits

Figure 1.
D 2 .. •.*.
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As explained above, this method is used to compress an entire

image without regard to the amount of detail in any particular .

area. Generally, finer sampling is required in the neighborhoods"-

of sharp gray-level transitions, while for relatively smooth

regions, coarse sampling is acceptable. Although recursive IDPCM '

has a higher data compression ratio and low mean-square error

than other methods, there is still room for improvement.

One improvement to recursive IDPCM is to use an adaptive

scheme. With this method, an image can be divided into subimages,

where a high bit rate is needed to deal with relatively complex

subimages but a lower bit rate is sufficient for relatively .-- -

simple subimages. Here, the complex subimages are defined as

neighborhoods of sharp gray-level transitions and simple sub-

images as neighborhoods of smooth gray-level transitions.

Identification of Subimages

In order to use an adaptive scheme, we have to detect the

complexity level of each subimage. "One way to measure the
N2p.

redundancy of an image and to compare it to the nominal N p (NXN

- is the size of an image, p is bits of per pixel) bits is the use 7

of the histogram statistics and the associated entropy statistics"[3].

- * Entropy represents the amount of information associated with the

set of coder input values and gives a lower bound on the average

' number of bits required to code those inputs. If the set of coder

input levels is Wl, W2, W3,...Wm with probabilities pl, p2, p3,...pm,

'- then it is not possible to code them without distortion using less .

* than
. •
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m
P k log2 Pkbis

However, this requires a very large amount of computation.9

Some approximation has to be introduced.

Measuring the level of sharp gray-level transitions can be

done by calculating the function:-S

Nij 2

R I ql I~ -.

NxN

where p is the mean intensity of an NxN size subimage, and puj

is the intensity of each pixel in a subimage. But for subiniages

a, b, and c shown in fig. 2, we get the same value for R.

ifrk,/ ,0 0,00.0

~ark'~briht "bright 1

*=bright, I dark

a b c
Fig. 2
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In fact, subimages a and b are in simple categories (low

frequency) and the subimage c is in complex category (high fre- .

quency). The more simple an image is, the smaller the differences

are between the image and a value which interpolates it. There-

fore, complexity could be associated with the differences. The 5

function, - -

m A )
(7 P - Pi

can be used to approximately measure the complexity of a subimage,

where, pi is an original pixel and pi is an interpolator of the

subimage. M is the number of differences in a subimage. In

recursive IDPCM, the middle interpolated image between two sub-

samples is subtracted from the original pixel and the first set

-*+ of differences are quantized at N1 bits. Then the middle inter-

-. polator added to its quantized difference and the neighboring

subsample S are used to calculate the second set of interpolated

values and their differences. Therefore, several quantization

levels can be used both for the first set differences and second

set differences. Fig. 10, 11, and 12 show that, differences, as

-" defined above, can represent the complexity of subimages. This ".

is an effective and feasible method, which is easy to compute.

Quantization

.- "A quantizer is a device whose output can have only a limited

number of possible values. Each input is forced to one of the

allowable output values. One way to accomplish this is to divide

W r .
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a -0

Quantizer LIput Range

Q x Q2 Q 3  Q4 Q5

Figure 5

In Recursive IDPCM, the typical distribution of differences

is shown in Figure 6, P W

P(x)

difference
-40 -20 0 2X 20 40

Figure 6

P( x )is the probability density function of differences

falling into 4X range. X is the value of a difference.

-10-

-9

p S 1 .2
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the input range into a number of bins as illustrated in Fig. 5.

If an input falls into the Kth bin, the output is the value Q

corresponding to the center of Ith bin so that each input is

rounded off to the center of the bin into which it falls. A

uniform quantizer is one in which all bin widths are equal. Non-

uniform quantizers allow different bins to have different widths."

Let X represent any input value, and let Qi be the corresponding

output of the quantizer. "If all values of X within the bins are

not equally likely then the squared error (Xi - Qj2 must be

weighted by the probability density function p(Xi) "[5].

F (Xi 4 X X i + d X
P( Xi ) - Lim

4 X"

F(X.) represents the number of differences which have values

between [Xi, Xi + AX]. If we choose AX = 1 (because of digital
1 1

signal), p(X.) is approximately equal to the probability density P

function.

*' In adaptive IDPCM the quantization strategy is to choose the

_ quantized levels (Qi) so that they minimize the total quantizer S

mean-square error. This error is defined as

n1 X4 2+1
e ( x - Q) P(X) dx (3)

Taking a partial derivate of equation (3) with respect to

Qi gives

r ...................... ...
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o +1

-2 (X-Qi ) P(X) dX= 0 (4)

"Qi xi

XP (X) dx

'i p (X) dX
Xi

6

Since we have two unknown variables Q and X. we

also take the partial derivatiVe of equation (3) with respect

to xi

•.q 2 2
-eq - ii (X-Q ) P(X)dX +-
x xx x -1 -

(x Q) P()dX - 0
xi

2 2

and get (Xi  - i 2p(x) 

i -Qi-1 Qi Xi (6)

S ~ .o •°°y.°
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From simultaneous equations (5) and (6)

- XP ()dX0
K (5)

:LL

* optimal quantizer output levels are achieved, which is shown

in Fig. 7

Quantizat~ion Input Range

CLI Q2.-optimai Quantizer Output Levels

Fig. 7
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Simulations of Adaptive Recursive IDPCM

In Fig. 7, the original image is sampled at 512x512 resolu-

tion with 8-bits per pixel. The image data compression steps were

as follows:

(1) The original image was subsampled at every 8th line and

every 8th pixel. Each subsample was quantized to 6-bits with a

uniform quantization. The maximum and minimum quantization levels

were 256 and 0.

(2) The middle point interpolated pixels were subtracted from

the original pixels, and the differences were optimally quantized

in 3 bits if the mean-square differences in a subimage were larger

than 4.0, (the average error in subsamples caused by quantizing

8-bit original pixels to 6-bit subsamples). Of course, those

differer, es were not stored if the mean-square differences in a

'- subimage were smaller than 4.0.

(3) The subsamples and the quantized middle point differences

were then used to calculate the second set differences. Suitable

. thresholds for the mean-square differences in a subimage were

chosen to determine how many bits are being used for quantizations.

0 if R'e C.

Nd 2 if R'e Cm

3 if R' C m

Cs , Cm, and Cc mean simple-detail, medium-detail, and complex-

detail subimages.

*(4) The subsamples and quantized differences according to the

R' were used to reconstruch the image. Fig. 8 shows the original

p • !
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image, Fig. 9 shows the processed image by using recursive IDPCM,

and Fig. 10 shows the image by using adaptive recursive IDPCM.

Comparing Fig. 9 with Fig. 10, we can see that the details in

Fig. 10 did improve..-

The total bit requirements for the images is the sum of bits

for subsamples, differences, and the modes of each subimage.

Since the number of bits for representing modes of each subimage

is very small, these extra bits can be negligible.

total bits = 3x3cN1 + 6xN 2 + 2x2xN 3 + 3xl2xN 4

N1 = number of subimages of R' > 4.0,N 2 = number of total sub-
2b

images, N3 = number of subimages of its R' (the second set dif-

ferences) between 4.0 and 12.0, N4 = number of subimages of R'

(the second set differences) >12.0. In adaptive recursive IDPCM

for the image shown: .

Bit Rate of Per Pixel = 0.35259

Mean-Square Error = 0.001798

- -

* * .t * * * -* . . ' - . . .-...

. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .
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Original Image

Fig. 8
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Recursive IDPGM BPP-0.3577296 ,MSE-0.0015513

Fig. 90

4L: %7
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R' 4 4.0

Fig. 11

161

4.OC<R'* 12. 0

Fig. 12
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(V.) Applications of Stationary Transform Processing in

Space-Variant Image Processing .

This work has focused on three areas: (1) Improved estimates

of local autocovariance statistics for direct implementation of

spatially-adaptive image processing algorithms. (2) Development

of adaptive image restoration algorithms for nonstationary images

degraded by blur and additive noise. (3) Development of adaptive

image enhancement algorithms for local contrast transformation,

with application to color imagery.

The results of this work are reported in the sections to

follow. In addition, Appendix A gives details of an extension

to the geometric-transform algorithm (see 1982 and 1983 AFOSR

Annual Reports). This computer algorithm is capable of generating p

a grid whose cells are of specified area and unspecified shape.

- The procedure is iterative, producing a better solution after each

iteration, and converging even for quite large differences in

cell area.

Improved Estimates of Local Autocovariance Functions

-- Our previous work in this area used the first-order Markov

model for autocovariance functions estimated from image subblocks.

- First-order parameters were obtained by fitting an exponential

curve to the autocovariance data. Recent tests, however, indicate

that this approach gives highly variant statistical estimates, due

to the inclusion of unreliable high-order lag data in the curve

* * fitting process.

. . ., --- *- - - -
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In Appendix B we report results from our experiments to

find useful measures of local image autocovariance parameters

from small subblocks of data. The basis of this work is a new

technique for estimating the correlation parameters of first- .

order Markov (nonseparable) exponential autocovariance models.

The method assumes that image data is stationary within NxN-pixel

subblocks. A measure of the usefulness of the ensuing correlation -

parameters may be had by observing their correlation with signal

activity within the scene. Subblocks of dimension N=16 are

shown to provide estimates fitting this criteria, even when the

original data is degraded by significant amounts of blur and

noise. This latter fact bodes well for spatially-adaptive image

restoration applications. An application to block-interpolative

data compression is also included in Appendix B.

Adaptive Image Restoration

The basic concept of stationary transforms in image restora-

ti on is as follows:

. Assuming the image to be degraded by blur and additive

noise, then -

. Estimate the autocovariance parameters by the method

outlined previously. I

Apply geometric transforms to produce stationarity in

- 
. correlation length.

Filter the resulting data with, e.g., a Wiener filter

based on the stationary autocovariance distribution.

• .; ........... . . ,-, .. . . . . . . •. ...-...., .... . .. .,. .... • ...- ..... ..... ,..:...,--..-'.
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Apply the inverse geometric transform to restore the original

geometry.

This approach is quite feasible for 1-D data processing, since

the geometric transforms simply translate into straightforward

decimation and interpolation operations. However, we showed in

the 1983 AFOSR Annual Report that the 2-D implementation of the

above steps results in highly distracting artifacts in the form

of regular patterns of correlated noise. In an attempt to over-

come this limitation we investigated a modification of the above

technique:

. Estimate autocovariance parameters in NxN-pixel subblocks S

as before.

Subsample (decimate) subblocks by a linear scaling factor

proportional to these parameters in order to produce .

constancy over all the parameter set.

Place the new subblocks at the centers of the original

subblocks, and apply a nonadaptive Wiener filter as before. ___

Restore the subblocks to their original dimensions by

i nterpol ati on .

Figures l(a) and l(b) show the results of this procedure for

the case where additive noise is the only source of degradation. .

The resulting restoration in Figure l(b) is encouraging, since

the residual blocking effect can most likely be removed by band-

pass filtering incorporated at the same time as the noise-filter- ""'"."'

ing.

We have also investigated several new approaches for adaptive _

image restoration using space-varying filters. A simple type of

... .. . .. .. ...-... *...*..* .. *.% -.*.* . . .**'.
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space-variant deblurring is implemented via an Adaptive Biased

Laplacian operator. This is a 3x3 kernel given by:

L(x~y) = -1 -1 -1

-1 8+d(xy) -1 (1)

ML11-I -Ii 9

The deblurring is given by a convolution between L(x,y) and

the image i(x,y). The term d(x,y) is a space-varying bias which

adapts to local image statistics; for example, image variance

var(x,y)-

d(x,y) = f(var(xy)) (2)

where f( ) is monitonically decreasing.

When var(x,y) is high, for example at large edges we want

L(x,y) to be a high-pass filter. In regions of low variance, we

want L9x,y) to be all-pass. These constraints are satisfied when

2
d(x,y) = I + 9xexp (-fxvar(x,y)2) ; f>O (3)

From eqn. (3), we notice that the minimum value of d(x,y) is

unity, and the maximum is 10. In conjunction with f=0.0ll, this

range is found to give good results. S

- Normalization of L(x,y) is necessary to avoid large spatial

" gain variations during the convolution: the resulting normalized

kernel is given by; .

L'(x,y) = L(x,y) " d(x,y) (4)

The adaptively-processed image is,

g(x,y) =i(x,y) **L'(x,y) (5)

. . .. . . . . . . . *-..* . . . . .
"-"," "" '" "- .. " '"." ' '. . . " ", . """"" """, q ,'". . . "' ' ' "

'
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Separating terms in equ. (5), we have;

g(xy) = i(xy) ** (L/d(xy) + i(x,y) (6)

where L is the usual 3x3 Laplacian kernel consisting of -1 in all

elements except the center element of 8. An additional weight

in the first term prevents saturation, i.e.,

g(xy) = 0.3[i(x,y) ** (L/d(xy))] + i(xy) (7)

Figures 2(a) and 2(b) show an image before and after pro-

cessing with equ. (7). The effect of unwanted noise boosting in O

areas of low signal activity is bypassed in this adaptive

approach.

Adaptive Image Enhancement

A new algorithm for adaptive contrast enhancement is described

in this section. The aim of the algorithm is to compensate for a-..

nonuniform illumination in scenes, and is based on the often

observed fact that local maps of mean and variance correlate

quite strongly in the positive sense. The philosophy of the O

algorithm may be outlined as follows:

. If the local mean T(x,y) is high, then leave the image

unaltered. .

If the local mean T(x,y) is low, then increase the variations

about the mean as well as the mean itself.

For convenience we will drop the (x,y) image coordinates and

represent the algorithm as follows:

g kl(i - T) + k2 + T (8)

The terms k1 and k2 are functions of T(x,y). In order to satisfy

2A
* --..--. * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ °% ..................................
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the algorithm specifications they should exist within the following

limi ts:

k= < 1 ; = 255

< 3 ;T=0

max(k1 ) = 3 (9)

= <0 ;= 255

<C ; =0

Functional forms which accomodate these limits are given in a

general form by,

k A 15 + 1 (10)1 2.

k2 = C(l -255 )t (11)

Optimum values for the constants based on experimental trials

are: A = 100, C = 70, t = 2.

The terms kI and k2 are, respectively, the local contrast

and local mean adjustment factGrs. Calculation of local means

I is achieved by neighborhood averaging over 9x9-pixel windows. . "

Figures 3(a) & (b) illustrate the effect of this adaptive

image enhancement. Individual red, green, and blue bands were

processed separately to produce the color imagery.

Note 7

Appendix A was submitted for publication in "Computers and

Graphics", January 1984.

Appendix B was submitted for publication in IEEE Trans. on

- % °-° -
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.Acoustics, Speech and Signal Processing, February 1984.
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APPENDIX A

An Algorithm for Generating Connected

Quadrilaterals of Specified Area
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I. INTRODUCTION.

This paper addresses a simply-posed problem: starting with a simple

grid of square cells, determine the coordinates of a new grid in which the

area of every cell is specified individually. The shapes of cells in the new

grid are unspecified.

This problem arose in an image processing/remote sensing application [1].

We envisage that the solution may find other applications; for example, in corn-

puter graphics, mapping, integrated circuit fabrication...

The flavor of the paper is heuristic. Convergence of the algorithm is

demonstrated by examples, without proof.

II. ALGORITHM.

Figure 1 illustrates the broad objectives and constraints of the problem.

Each unit-area cell in the original regular grid is to be expanded to form an

. arbitrary shaped quadrilateral of specified area. No other constraints are

*, imposed, apart from the obvious ones of contiguity and connectivity in the

transformed grid. Simply stated, we wish to know the coordinates of each R-9

cell in the transformedgrid, relative to an arbitrary set of orthogonal axes

in the x-y plane. If we define a regular grid of control points whose coor-

dinates lie at the vertices of each cell, then the problem is to determine how •

such a regular grid is distorted by the many interactions of local area ex-

pansions centered on each cell.

" - Our approach is to superpose the expansion of each cell on the global -

grid, subject to the constraint that each expansion should minimally affect

the relative geometry of other cells. This philosophy is easily explained by

.....................- I - . *.-.....

--. i.. ..***-. ,.%* .



a 1-D illustration. In Figure 2(a) we begin with uniformly spaced control

points. In Figure 2(b) an expansion factor of 2 is applied to the center

00
of a cell at xo , resulting in localized stretching. The next expansion-. -

is applied to the neighboring cell, and so on. Continuing this process

yields a 1-D control point array whose coordinates reflect the desired ex-

pansion of cells. No iterations are required. The basic 1-D geometric

transformation can be represented by a spatial displacement Ax,

&x (E- 1) - (la)

where E is an "expansion factor," and

Compression 0 : E < 1

(lb)

Expansion - 1 < E <

In the 2-D case, it is not possible to design a transformation which

expands the area of a single cell, while preserving the geometry of all -

other cells. What is needed is a technique for reducing the mutual interference

of local cell expansions. Consider a single radial expansion centered on a

' single cell in a grid of control points, as shown in Figure 3. Straight-

forward radial expansion takes place within a circle of radius r centered

on the expansion cell. Elsewhere, more remote control points are simply dis- •

placed. Hence, we can define a geometric transformation as follows:

Ax = x(E-l) 2  2 1/2
(x+y) < r (2a)

Ay = y(E-1)J

-2-



5x -co (E-1).
x2  y21/
(x + y)I 2 , r (2b)

Ay-- r. sin e • (E-I"

where x, y, and e are control point coordinates relative to the center of ex-

pansion (see Figure 3). Nominally, r = d/2 in order to confine expansion

to a single cell as much as possible. The result of applying a linear expan-

sion of E = 2 to a single cell is shown in Figure 4. Note that the area

expansion of the cell is E2  or 4. Also, notice that the influence of this

expansion on other cells diminishes at greater distances from the expansion S

center.

We have found that the simple geometric transformation in Eqn. (2) works

well if applied sequentially to all cells in the grid, provided that correction

factors are used to compensate for the influence of single-cell expansions

on all other cells. Furthermore, iterating the procedure yields the desired

cell arias in most cases.

The iterative algorithm proceeds as follows:

Notation

Assune initially an n x m grid of unit-area cells.

C.j - cell (ij) (I s i s n : 1 : j < m)

Ei - desired linear expansion of C.

Ei  - desired area of C..

Ai. - actual area of Cij at any time.

-3-
- . . ,. -. . .



Algori thm:

START

For i = IORDER (1) IORDER (n)

For j = JORDER (I) JORDER (m)

Measure Aij

Form the corrected expansion E = E

Apply Eqn. (2) to Ci, using E.

END OF LOOPS

RETURN TO START, repeat for K iterations.

At

The arrays IORDER and JORDER are needed to generalize the order in which

the cells are treated, in other words, each cell is considered only once

during an iteration, but cells may be addressed in any desired sequence. We

will refer to this as the cell sequence.

NOTE: In applying Eqn. (2), we measure X and y from the specified control

point to the centroid of Clj.

III. EXAMPLES*

Most of our examples concern a grid of 16 cells; i.e., 25 control points. _

* The arbitrary set of expansions shown in Figure 6 is used throughout the tests.

Several variations of the iterative algorithm are presented in order to demon-

strate the following: v

* effect of cell sequence.

effect of radius r in Eqn. (2).

existence of an upper limit on E

• The figures in this section are not drawn to scale.

-4-
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In all tests, we employ an ms expansion error measure for the solution,

given by:

n m 1/2

e(k) = n--m = j  Ai)2]- (3)
- --

where k is the iteration index.

Cell Sequence..- i -..

Figure 5 shows the notation for cell sequence. Tests indicate that row-

by-row or column-by-column sequences are superior to, say, circular or spiral

ordering. Indeed, for the particular 16-cell example selected, only the

former yield convergence in the solutions. Figures 6(a) and (b) show .

the transformed cells after 100 iterations using the following cell sequences.

(i) Fig. 6(a) 1 2 3 4, 5 6 7 8, 9 10 11 12, 13 14 15 16.

(ii) Fig. 6(b)- 1 2 3 4, 8 7 6 5, 9 10 11 12, 16 15 14 13.

In both (i) and (ii), the nominal value r = d1/ was used. Evidently, the

rate of convergence and form of solution is affected by the cell sequence,

although only slightly in this example. However, these effects depend greatly

on the expansion values. In some cases, even the sequence in (ii) does not

yield a solution.

Radius parameter, r.

The nominal value of r = d//- is not optimum. For most expansion sets,

a value can be found which dramatically increases the convergence rate. For

example, a value of r = /2d in conjunction with the cell sequence in (ii)

gives a solution with e(100) 7 x 10-6 . i.e., a factor of 100 better than

the nominal r solution. The resulting grid of cells is shown in Figure 6(c).

Clearly, this value of r also leads to a somewhat different solution.

-5 -, .
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Upper limit on expansions.

* The series of results in Figures 6(d),(e), and (f) illustrates the

behavior of the algorithm as the expansion applied to one particular cell

,- is increased. Ultimately, the boundaries of adjacent cells cross, creating

additional cells (cell nos. 15 and 16 in the example shown). Our experience

is that the maximum allowable expansion(s) is a function of r and the cell l

sequence.

Some additional interesting results are now discussed. Tests of the

iterative algorithm using symmetrical expansion sets yield Figures 7(a) -

and (b). We observe that the asymmetry of the cell sequence is responsible

for the asymmetry of the solutions. An example using 64 cells is given in

Figure 0.

IV. REMARKS.

We have demonstrated the behavior of an iterative procedure for generating..

connected quadrilaterals of specified area. The solutions are nonunique, and

depend on two free parameters - radius r in Eqn. (2), and the cell sequence.

Obviously, the nonuniqueness is a consequence of the overdeterminacy of the

problem. Additional constraints on the quadrilateral cells, such as

shape constraints, would reduce the number of solutions. The algorithm pre-

sented here usually converges, even when the expansion set spans a large dynamic -

range.

* -6-
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APPENDIX B

* Estimation of Local Statistics for Digital

Processing of Nonstationary Images



S

1. ITTRODUCTION.

The design of digital image processing algorithms is critically dependent - "e

an the spatial statistics of the imagery. The largest class of algorithms

assumse stationary statistics, for example,* the Wiener filter for least-squares

image restoration [1], and the DPCM coder in data compression [2) . The

main advantage of such algorithms lies in the relative simplicity of their

design and implementation. A drawback, however, is that images are inherently .

nonstaticnary; consequently, the results of processing are suboptimal. The 0

Wiener filter, for example, is designed from estimates of the object (and

noise) autocovariance functions. The question is: how do we obtain meaningful

estimates of the object covariance fumction? Typical imagery consists of .0

large regions with nearly uniform intensity, plus a relatively few small areas

of high signal activity, such as edges, natural texture, etc. Iherefore,

an estimate of the autocovariance based on the global image data would yield -

a rather broad function, since most of the data tends to be highly correlated. -

A Wiener filter designed from sud an estimate would yield a very smooth

restoration, and important edge detail would remain blurred. Since the .-. -'

wiener filter provides a comproise between noise smoothing and deblurring,

with a fairly conservative bias towards noise smoothing, a better approach

is to estimate autocovariance from regions of low correlation, i.e. edges,

etc. %he resulting restored images exhibit a greater degree of sharpness,

although they are inevitably noisier than normal least-squares restorations.

Nevertheless, all of these techniques are handicapped because they do not

account for nnstationarity in the image data.

A more rsecent class of imaqu processing algorithms arcommodates this

* nonstationarity. These algorithm share the characteristic of adapting to,

or tracking, the local variations in image correlation. The resulting Pro-

cessors are space-varying, in accordance with the image nonstationarity. --

-1- *.
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Lahart [31 has reported a method of implcenting local least-squares resto-

ration in which two different autocovarlance functions were used, depending 0

an whether pixels were considered to belong to high or law signal-activity

categories. Anderson and Netravali (4 used a masking function to inglement

a form of space-varying noise-smoothing which adapted to local signal details.

A different approach to achieving the same goal is due to Kasturi [5), who

considered the particular case of signal-dependent noise. (See also Froehlich,

Walkup, and Asher [6).) The benefits of space-vaxying processing have proved 0

even more dramatic in the field of image data compression. A review of adapt-

ive coding methods is provided by Habibi (73. All of the work cited above

I* depends on some kind of direct estimation of local image statistics. Other

mthods use nonstationary models indirectly; an excallent example is Widraw's

Ls adaptive filter £8).

In order to quantify the nonstationarity of images, and, often, in order

to implement adaptive processing, we require estimates or measurements of ..-

the local image statistids, specifically the autocovarianc function. The

simplest way of achieving this is to divide the image into N z N -pixel

* subblocks (N a 16), and calculate the standard biased or unbiased autocovar-

iance function of each subblock. in effect, each subblock is treated an part

of a wide-sense stationary field. It is well-known, however, that reliable

power spectral estimation requires much larger amounts of data. Neverthe- -.

less, as our work shows. it is possible to obtain useful maps of local auto-

covariance parameters if we assume simple parametric autocovariance models-

Specifically, we employ the popular first-order Markov random field model

for image data. Three topics are addressed herein:

Sest4mation of local autocovariance parameters.

2-~
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O optimum choice of H.

correlation between the estimated autocovariance

paraneterS and observed signal activity.

" In the sections to follc, we review the autOcvariance model and discuss

possible ways of estimatinq the parameters of each local subblock. Examples

ae given which illustrate some of the problems encountered when the estimates

are applied to real image data. Finally, we give an example of the value of

local estimates In adaptive data conpression. -

Global wide-sense statinary image data is generally modeled by a first-

order Zazkov random field with a nonseparable exponential autocovariance func- 0

tion, [9) given by

C(k,t) m2 { ex k4iZ'1(1

-where 02 is the variance. Typical vaues adopted for the correlation parame ters

are p p 0.0025, resulting in the simpler isotropic form

C(k,L) - a2 0.9S /  + ( {2)

This model is often assumed in nonadaptive DPCK coding systems.

A new model for nonstationary image data f(i, J) is given by:

2
C(kt:i3j) a ij) exp - VP- ,J)k-. + (ij) 44 (3)

1 2
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It is assuved that f(ij) is stationary over any N x N - pixel subblock cen-

teared on the coordinates (i,j) , and that values of a2, p , and p may be
1 2 ,

assigned to every location (i,j). (In practice, these values will be

correlated with their neighbors. Later in the paper we will discuss the

L iplications of this.) The next section discusses procedures for estimating .

the spatially-variant autocovariance parameters p (i,j) and p (ij).
1 2

•-S

111. ESTMNTZON OF LOCAL CORRELATION PARANMTERS.

The starting point for our estimates of p values is the usual biased

autocorrelation estimate,

-+ -1 .2 I I- 2- z (4)
A1
R(k.:i,j) 2 - f(m,n) f(m+k, n+-

a rn-i- N n - N"
2 2

or the biased autocovariance estimate, given by,

A 1 2fmn T _7i~)
C(k.:i,j) [(,n

N N N' "
2 .2-' \''

(5)

Ef(a + k, n + L) -t (ij) -

where f (i,J) is the spatial mean of an N x N - pixel subblock centered on (i,j), .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . .

,-t
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Simple parametric estimates.

From Eqn. (3), simple parametric estimates of p and p are given by:
1 2

A 1[Ckito:±iT't 2

* 1 (k2 -kI) C(k2 oii)

(6)
A0

A 1 Z

2

autoregressive (AR) estimates found in Box-aenkins time series analysis (10]

For example, p is then

1A

A C(0,0:ilj)1

* In practice, our constraint that N should be small results in autocovariance

data with a high degree of variance, causing the 0-estimates to be inaccurate.
A A

*Furthermore, the values of C(1,O-.i,J) and C(0,1:i,j) can he (and often are)

*negative, rendering Eqns. (6) and (7) indeterminate. For example, Figure 2

A
shows: a map of o (i,j) obtained by applying Eqn. (6) to the image in Fig-

A
ure 1. with k,- 1 and k - 3. The map was obtained by computing 0 at every

21

*pixel coordinate in the original image, with overlapping subblocks of 16 x 16

pixels. The large dark areas correspond to negativity in the argument of Zn

A A
in Eqza. (6), caused by negative values of either C(k,,O:i~j) or C~'] ,O:.,j).

A. 2*
At this point we should note the influence of the choice of lags kc and

k on the estimation quality. Estimation theory tells us that the lowest
2

order lags provide the most reliable autocovariarice data (least variance) Eli).



- r. . .

suggesting that kI - 0, k - 1 be the optimum data to use. However, the

autovariance at zero lag often contains a significant *error" equal to the

variance of unwanted film-grain noise (assuming the image data originate*

from film). This explains the choice of k 1 above. The selection of k 2 in-

1 2

volves a tradeoff between the greater reliability of low order lag data and

the increased error sensitivity of Eqn. (6) when k2 is small. However, this

form of estimation gives poor results for any combination of lag data, as

Figure 2 demonstrates.

Modified paraetric estimates.

A new method of p-estimation avoids the indeterminacy problem encountered

in the simple estimation of Eqn. (6). For discussion purposes, estimation is

executed in tw stages, although the calculations can be combined in a single step.

First, the image is radimetrically transfozemd [12],[13] to yield data

exhibiting block-stationary mean and variance. The transform is given by,

-is)- i) + ()) +g ~ a(ij)s .-

where a(ii,) and F(i , J) are measured in an X x N - pixel subblock centered

on (,J). The mean and variance measured over any X x M - pixel subblock
T n 2, respectively. Typically,

* ~of g(i,j) are the constants s n s petvl.Tpcly

is a pixels. In the second stage, the biased autocorrelation estimates

in Eqn. (4) are used to fozm the ratios,

z(k,k 2 :ij) - (Ic2,0o.,)--"

(9)

(oL1 :i,j)

...... . . . . . . .
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if we accept the exponential autocovariance model in Eqn. (1), then

the expected value of zi (say) is C14] , -

-2 k
expe (-k/ 01 + F ) ret - .sN

E * -2 (10)
a12 exp, (-kv'p1 f) +C 3r ..213

-- The expected value of z 2 is likewise related to pi. Eqn. (10) represents

a nonlinear relationship between z and 7 which can be implemented in 0

the fozm of a look-up table for the purpose of obtaining p values. (See1

Figure 3.)

Figures 4(a) and 4 (b) show the distributions of z, and obtained by 9

applying Eqn. (9) to the autocorrelations of the transformed data g (i, J).
The parameters of Eqs. (4), (8) ,(9) and (10) are: N-16, M - 8, 02 - 1500,

- 128, k1  1, and k 3. The histogram distributions of z and z "
2 1 2

values are depicted in Figure 3 relative to the z -p look-up table. Most --

(80%) of the values fall between the limits 1.154 and 1.194 corresponding .'-

to the range 0.0 _Sf S 0.25. This is probably the useful range of p for ap-

plications in image processing and analysis. values of z outside this range

are caused by breakdown-of the exponential model in Eqn. (3). For example,

in certain subbloclathe autocovariance estimate in Eqn. (5) contains strong

periodic components. interestingly, the mode of ther-histogram occurs at

* - 0.1, corresponding to the correlation" c-ffticient exp(-0.1) - 0.9 often

used in nonadaptive processing.

A significant advantage of this new 0-estimator is that a and z are

always positive, thereby avoiding the problem caused by negative autocovari-

ance data in Eqn., (6). Furthermore, the estimates are much less sensitive

to very small values of autovariance at lag k2 , caused by random errors in

the estimation of autocovariance itself (Eqn. (5)). Also, estimates may

be improved by pre-procesaing the maps of z and z, using a smoothing algor-



ithm, thereby reducing the random errors incurred in the model-fitting process.

The effect of neighborhood-averaging is evident in the narrowing of the - "

histograms of z and z also shown in Figure 3. (Values of z outside the .
1 2

useable range in Figure 3 may be compressed by means of a slightly modified

look-up table. This form of biasing to achieve reduced variance in parameter

estimates is common in spectral estimation.) Application of the previous

look-up tables (Figure 3) produces the maps of /7 and p in Figures
1 2

5(a) and 5(b). An important feature of these maps, also apparent in examples

later in the paper, is the correlation between the autocovariance parameters

and signal activity. it is interesting to note that maps of local variance -

often employed for signal measures - are not as sensitive to low contrast

detail. The indication is that the nonseparable exponential model for auto- --

covariance is worthwhile for describing nonstationary data if applied locally.

IV. BEHAVIOR OF THE ESTIMATOR. -

This section examines important practical aspects of the behavior of

Eqn. (9).

Subblock dimension (N).

Local autocovariance estimation is based on small subblocks of N x N

pixels, each one of which is assumed to belong to a global wide-sense station-

ary random field. Attaining useful resolution of the image nonstationarity

requires that N be small, and yet this violates the normal rules of power

spectral estimation. This would suggest, then, that any results of local "-',-.

estimators are useless. However, the fact that our estnates correlate well

with observed signal activity suggests the contrary. Further support for --

Eqn. (9) is now given.

-- . . . . . . .. . .
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Consider a one-dimensional window of data which contains a single edge

(see Figure 6(a)). The biased autocovariance estimate from Eqn. (5) is seen

in Figure 6(b) to be piecewise linear. Natural edges tend to be less abrupt,

resulting in smoother autocovariance functions which, over small lag values,

fit the general shape of the exponential in Eqn. (1). Thus, Eqn. (9) is seen

to behave well if N is small enough to traverse single edge-like features.

Edge height (contrast) is irrelevant to the estimator. Figure 7 shows maps

of /p and Ip for the well-known "girl" image for the cases N - 16, and 32.
1 2

The case where N - 16 is'neiar optimum in terms of resolution. (The case

- 8 is excessively noisy.)

Block estimation of parameters.

Tn certain applications, such as image data compression, single values

of the autocovariance parameters are sufficient for representing blocks of

N x N pixels, rather than values at Pvery pixel. We may think of the esti-

mation procedure as before with an additional parameter I - the increment

between estimates in the (i,j) image space. (1 - 1 in all the preceding

examples.) The estimation of V7 values is then posed as follows:

" Apply Eqns. (4) , (8), (9) and (i0) to give maps consisting

of (D/I) x (D/I) values of [ and ( (D is the image
1 2

dimension.)

" Take averages over blocks of dimension (N/I) x (N/I) to

give a total of CD/N) x CD/N) values of i. and
1 2

i.e., single values of _p and T for each N x N - pixel
1 2

subblock.

Values of I 4 and N 16 have been determined by trial and error to

,!.eld results which correlate well with observed signal activity. Greater

arro ts yield insufficient data for the averaging process.
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Estimation from degraded images.

The need to estimate autocovariance parameters from images which are

blurred and noisy arises in the process of image restoration. Experiments

with images blurred by 3 x 3 - neighborhood averaging and additive Gaussian

noise (standard deviation 5.0) reveal no appreciable change in the maps of

z or /p. Even noise levels of two or three times this produce useable

estimates of the autocovariance parameters.

-0

V. DATA CO1ESSZC APPLICATION.-

In this section, we show an application of local correlation parameters "

to block interpolative codingfis3. We address so-called destination inte=pola-

tion, where the rate of pixels transmitted from image lines is proportional
to o . The procedure is as follows:

divide the image into N x N - pixel subblocks.

* estimate YfP for each subblock (see previous section).

* subsample each subblock by a function r -/V

to yield a subblock of N X N' pixels. Cm max all /7i

N' -N/r0.

* trandit the subsainpled data, plus the values of PT

reconstruct the image by interpolation (the inverse of sub-

* sampling.

Subsamplinq along lines is convenient in images which are raster scanned.

. Additional compression is possible if across-line redundancy is reduced by

Ipp

i~iiii---U-i

II lql- P I 4 II q i ,°I . .. .. . . . . . . . . .
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subsampling in this direction using ( values.
2

Figure 8 shows the girl image after compression (8(a) ) and reconstruction

8(b) ) using 01  only. The compressed image consists of contiguous blocks 0

whose width is proportional to fF.Data compression is only 30 %,indica-

ting that this particular data contains little spatial redundancy. The degra-

dation of high frequency details associated with nonadaptive interpolative 0

coding is considerably reduced. Incorporating DPC4 coding would reduce the

data rate by an additional factor of two.

V1. CONCLUSIONS.

A simple, useful method for estimating local correlation parameters in

images has been presented. The joint assumptions of stationarity within

NxN-pixel subblocks (N-16) and the nonseparable exponential model for auto- .

covariance is seen to work well when judged on the basis of comparisons with

observed signal activity. The resulting maps of autocovariance parameters are

useful in image data compression and, we expect, in adaptive filtering and

restoration.

4
q.°. *
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